Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning to Control PDEs with Differentiable Predictive Control and Time-Integrated Neural Operators (2511.08992v1)

Published 12 Nov 2025 in cs.CE

Abstract: We present an end-to-end learning to control framework for partial differential equations (PDEs). Our approach integrates Time-Integrated Deep Operator Networks (TI-DeepONets) as differentiable PDE surrogate models within the Differentiable Predictive Control (DPC)-a self-supervised learning framework for constrained neural control policies. The TI-DeepONet architecture learns temporal derivatives and couples them with numerical integrators, thus preserving the temporal causality of infinite-dimensional PDEs while reducing error accumulation in long-horizon predictions. Within DPC, we leverage automatic differentiation to compute policy gradients by backpropagating the expectations of optimal control loss through the learned TI-DeepONet, enabling efficient offline optimization of neural policies without the need for online optimization or supervisory controllers. We empirically demonstrate that the proposed method learns feasible parametric policies across diverse PDE systems, including the heat, the nonlinear Burgers', and the reaction-diffusion equations. The learned policies achieve target tracking, constraint satisfaction, and curvature minimization objectives, while generalizing across distributions of initial conditions and problem parameters. These results highlight the promise of combining operator learning with DPC for scalable, model-based self-supervised learning in PDE-constrained optimal control.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: