Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Finite Difference Approximation of Second Order Regularization of Neural-SDFs (2511.08980v1)

Published 12 Nov 2025 in cs.GR, cs.CV, and cs.LG

Abstract: We introduce a finite-difference framework for curvature regularization in neural signed distance field (SDF) learning. Existing approaches enforce curvature priors using full Hessian information obtained via second-order automatic differentiation, which is accurate but computationally expensive. Others reduced this overhead by avoiding explicit Hessian assembly, but still required higher-order differentiation. In contrast, our method replaces these operations with lightweight finite-difference stencils that approximate second derivatives using the well known Taylor expansion with a truncation error of O(h2), and can serve as drop-in replacements for Gaussian curvature and rank-deficiency losses. Experiments demonstrate that our finite-difference variants achieve reconstruction fidelity comparable to their automatic-differentiation counterparts, while reducing GPU memory usage and training time by up to a factor of two. Additional tests on sparse, incomplete, and non-CAD data confirm that the proposed formulation is robust and general, offering an efficient and scalable alternative for curvature-aware SDF learning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: