Papers
Topics
Authors
Recent
2000 character limit reached

Compositional Distributed Learning for Multi-View Perception: A Maximal Coding Rate Reduction Perspective (2511.08707v1)

Published 11 Nov 2025 in eess.IV and cs.IT

Abstract: In this letter, we formulate a compositional distributed learning framework for multi-view perception by leveraging the maximal coding rate reduction principle combined with subspace basis fusion. In the proposed algorithm, each agent conducts a periodic singular value decomposition on its learned subspaces and exchanges truncated basis matrices, based on which the fused subspaces are obtained. By introducing a projection matrix and minimizing the distance between the outputs and its projection, the learned representations are enforced towards the fused subspaces. It is proved that the trace on the coding-rate change is bounded and the consistency of basis fusion is guaranteed theoretically. Numerical simulations validate that the proposed algorithm achieves high classification accuracy while maintaining representations' diversity, compared to baselines showing correlated subspaces and coupled representations.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: