Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Bio AI Agent: A Multi-Agent Artificial Intelligence System for Autonomous CAR-T Cell Therapy Development with Integrated Target Discovery, Toxicity Prediction, and Rational Molecular Design (2511.08649v1)

Published 11 Nov 2025 in q-bio.QM and cs.AI

Abstract: Chimeric antigen receptor T-cell (CAR-T) therapy represents a paradigm shift in cancer treatment, yet development timelines of 8-12 years and clinical attrition rates exceeding 40-60% highlight critical inefficiencies in target selection, safety assessment, and molecular optimization. We present Bio AI Agent, a multi-agent artificial intelligence system powered by LLMs that enables autonomous CAR-T development through collaborative specialized agents. The system comprises six autonomous agents: Target Selection Agent for multi-parametric antigen prioritization across >10,000 cancer-associated targets, Toxicity Prediction Agent for comprehensive safety profiling integrating tissue expression atlases and pharmacovigilance databases, Molecular Design Agent for rational CAR engineering, Patent Intelligence Agent for freedom-to-operate analysis, Clinical Translation Agent for regulatory compliance, and Decision Orchestration Agent for multi-agent coordination. Retrospective validation demonstrated autonomous identification of high-risk targets including FcRH5 (hepatotoxicity) and CD229 (off-tumor toxicity), patent infringement risks for CD38+SLAMF7 combinations, and generation of comprehensive development roadmaps. By enabling parallel processing, specialized reasoning, and autonomous decision-making superior to monolithic AI systems, Bio AI Agent addresses critical gaps in precision oncology development and has potential to accelerate translation of next-generation immunotherapies from discovery to clinic.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: