Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Neumann-series corrections for regression adjustment in randomized experiments (2511.08539v1)

Published 11 Nov 2025 in math.ST and stat.ME

Abstract: We study average treatment effect (ATE) estimation under complete randomization with many covariates in a design-based, finite-population framework. In randomized experiments, regression adjustment can improve precision of estimators using covariates, without requiring a correctly specified outcome model. However, existing design-based analyses establish asymptotic normality only up to $p = o(n{1/2})$, extendable to $p = o(n{2/3})$ with a single de-biasing. We introduce a novel theoretical perspective on the asymptotic properties of regression adjustment through a Neumann-series decomposition, yielding a systematic higher-degree corrections and a refined analysis of regression adjustment. Specifically, for ordinary least squares regression adjustment, the Neumann expansion sharpens analysis of the remainder term, relative to the residual difference-in-means. Under mild leverage regularity, we show that the degree-$d$ Neumann-corrected estimator is asymptotically normal whenever $p{ d+3}(\log p){ d+1}=o(n{ d+2})$, strictly enlarging the admissible growth of $p$. The analysis is purely randomization-based and does not impose any parametric outcome models or super-population assumptions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 5 likes.

Upgrade to Pro to view all of the tweets about this paper: