Neumann-series corrections for regression adjustment in randomized experiments (2511.08539v1)
Abstract: We study average treatment effect (ATE) estimation under complete randomization with many covariates in a design-based, finite-population framework. In randomized experiments, regression adjustment can improve precision of estimators using covariates, without requiring a correctly specified outcome model. However, existing design-based analyses establish asymptotic normality only up to $p = o(n{1/2})$, extendable to $p = o(n{2/3})$ with a single de-biasing. We introduce a novel theoretical perspective on the asymptotic properties of regression adjustment through a Neumann-series decomposition, yielding a systematic higher-degree corrections and a refined analysis of regression adjustment. Specifically, for ordinary least squares regression adjustment, the Neumann expansion sharpens analysis of the remainder term, relative to the residual difference-in-means. Under mild leverage regularity, we show that the degree-$d$ Neumann-corrected estimator is asymptotically normal whenever $p{ d+3}(\log p){ d+1}=o(n{ d+2})$, strictly enlarging the admissible growth of $p$. The analysis is purely randomization-based and does not impose any parametric outcome models or super-population assumptions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.