SPEAR-MM: Selective Parameter Evaluation and Restoration via Model Merging for Efficient Financial LLM Adaptation (2511.08500v1)
Abstract: LLMs adapted to financial domains often suffer from catastrophic forgetting of general reasoning capabilities essential for customer interactions and complex financial analysis. We introduce Selective Parameter Evaluation and Restoration via Model Merging (SPEAR-MM), a practical framework that preserves critical capabilities while enabling domain adaptation. Our method approximates layer-wise impact on external benchmarks through post-hoc analysis, then selectively freezes or restores transformer layers via spherical interpolation merging. Applied to LLaMA-3.1-8B for financial tasks, SPEAR-MM achieves 91.2% retention of general capabilities versus 69.7% for standard continual pretraining, while maintaining 94% of domain adaptation gains. The approach provides interpretable trade-off control and reduces computational costs by 90% crucial for resource-constrained financial institutions.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.