Papers
Topics
Authors
Recent
2000 character limit reached

Spatio-Temporal Cluster-Triggered Encoding for Spiking Neural Networks (2511.08469v1)

Published 11 Nov 2025 in cs.NE and eess.SP

Abstract: Encoding static images into spike trains is a crucial step for enabling Spiking Neural Networks (SNNs) to process visual information efficiently. However, existing schemes such as rate coding, Poisson encoding, and time-to-first-spike (TTFS) often ignore spatial relationships and yield temporally inconsistent spike patterns. In this article, a novel cluster-based encoding approach is proposed, which leverages local density computation to preserve semantic structure in both spatial and temporal domains. This method introduces a 2D spatial cluster trigger that identifies foreground regions through connected component analysis and local density estimation. Then, extend to a 3D spatio-temporal (ST3D) framework that jointly considers temporal neighborhoods, producing spike trains with improved temporal consistency. Experiments on the N-MNIST dataset demonstrate that our ST3D encoder achieves 98.17% classification accuracy with a simple single-layer SNN, outperforming standard TTFS encoding (97.58%) and matching the performance of more complex deep architectures while using significantly fewer spikes (~3800 vs ~5000 per sample). The results demonstrate that this approach provides an interpretable and efficient encoding strategy for neuromorphic computing applications.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.