FaithAct: Faithfulness Planning and Acting in MLLMs (2511.08409v1)
Abstract: Unfaithfulness remains a persistent challenge for LLMs, which often produce plausible yet ungrounded reasoning chains that diverge from perceptual evidence or final conclusions. We distinguish between behavioral faithfulness (alignment between reasoning and output) and perceptual faithfulness (alignment between reasoning and input), and introduce FaithEval for quantifying step-level and chain-level faithfulness by evaluating whether each claimed object is visually supported by the image. Building on these insights, we propose FaithAct, a faithfulness-first planning and acting framework that enforces evidential grounding at every reasoning step. Experiments across multiple reasoning benchmarks demonstrate that FaithAct improves perceptual faithfulness by up to 26% without degrading task accuracy compared to prompt-based and tool-augmented baselines. Our analysis shows that treating faithfulness as a guiding principle not only mitigates hallucination but also leads to more stable reasoning trajectories. This work thereby establishes a unified framework for both evaluating and enforcing faithfulness in multimodal reasoning.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.