DRACO: Co-design for DSP-Efficient Rigid Body Dynamics Accelerator (2511.08395v1)
Abstract: We propose a hardware-efficient RBD accelerator based on FPGA, introducing three key innovations. First, we propose a precision-aware quantization framework that reduces DSP demand while preserving motion accuracy. This is also the first study to systematically evaluate quantization impact on robot control and motion for hardware acceleration. Second, we leverage a division deferring optimization in mass matrix inversion algorithm, which decouples reciprocal operations from the longest latency path to improve the performance. Finally, we present an inter-module DSP reuse methodology to improve DSP utilization and save DSP usage. Experiment results show that our work achieves up to 8x throughput improvement and 7.4x latency reduction over state-of-the-art RBD accelerators across various robot types, demonstrating its effectiveness and scalability for high-DOF robotic systems.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.