Papers
Topics
Authors
Recent
2000 character limit reached

2D Representation for Unguided Single-View 3D Super-Resolution in Real-Time (2511.08224v1)

Published 11 Nov 2025 in cs.CV and cs.AI

Abstract: We introduce 2Dto3D-SR, a versatile framework for real-time single-view 3D super-resolution that eliminates the need for high-resolution RGB guidance. Our framework encodes 3D data from a single viewpoint into a structured 2D representation, enabling the direct application of existing 2D image super-resolution architectures. We utilize the Projected Normalized Coordinate Code (PNCC) to represent 3D geometry from a visible surface as a regular image, thereby circumventing the complexities of 3D point-based or RGB-guided methods. This design supports lightweight and fast models adaptable to various deployment environments. We evaluate 2Dto3D-SR with two implementations: one using Swin Transformers for high accuracy, and another using Vision Mamba for high efficiency. Experiments show the Swin Transformer model achieves state-of-the-art accuracy on standard benchmarks, while the Vision Mamba model delivers competitive results at real-time speeds. This establishes our geometry-guided pipeline as a surprisingly simple yet viable and practical solution for real-world scenarios, especially where high-resolution RGB data is inaccessible.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: