Clean up your Mesh! Part 1: Plane and simplex (2511.08058v1)
Abstract: We revisit the geometric foundations of mesh representation through the lens of Plane-based Geometric Algebra (PGA), questioning its efficiency and expressiveness for discrete geometry. We find how $k$-simplices (vertices, edges, faces, ...) and $k$-complexes (point clouds, line complexes, meshes, ...) can be written compactly as joins of vertices and their sums, respectively. We show how a single formula for their $k$-magnitudes (amount, length, area, ...) follows naturally from PGA's Euclidean and Ideal norms. This idea is then extended to produce unified coordinate-free formulas for classical results such as volume, centre of mass, and moments of inertia for simplices and complexes of arbitrary dimensionality. Finally we demonstrate the practical use of these ideas on some real-world examples.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.