Speech Emotion Recognition with Phonation Excitation Information and Articulatory Kinematics (2511.07955v1)
Abstract: Speech emotion recognition (SER) has advanced significantly for the sake of deep-learning methods, while textual information further enhances its performance. However, few studies have focused on the physiological information during speech production, which also encompasses speaker traits, including emotional states. To bridge this gap, we conducted a series of experiments to investigate the potential of the phonation excitation information and articulatory kinematics for SER. Due to the scarcity of training data for this purpose, we introduce a portrayed emotional dataset, STEM-E2VA, which includes audio and physiological data such as electroglottography (EGG) and electromagnetic articulography (EMA). EGG and EMA provide information of phonation excitation and articulatory kinematics, respectively. Additionally, we performed emotion recognition using estimated physiological data derived through inversion methods from speech, instead of collected EGG and EMA, to explore the feasibility of applying such physiological information in real-world SER. Experimental results confirm the effectiveness of incorporating physiological information about speech production for SER and demonstrate its potential for practical use in real-world scenarios.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.