Papers
Topics
Authors
Recent
2000 character limit reached

Breaking the Adversarial Robustness-Performance Trade-off in Text Classification via Manifold Purification (2511.07888v1)

Published 11 Nov 2025 in cs.CL

Abstract: A persistent challenge in text classification (TC) is that enhancing model robustness against adversarial attacks typically degrades performance on clean data. We argue that this challenge can be resolved by modeling the distribution of clean samples in the encoder embedding manifold. To this end, we propose the Manifold-Correcting Causal Flow (MC2F), a two-module system that operates directly on sentence embeddings. A Stratified Riemannian Continuous Normalizing Flow (SR-CNF) learns the density of the clean data manifold. It identifies out-of-distribution embeddings, which are then corrected by a Geodesic Purification Solver. This solver projects adversarial points back onto the learned manifold via the shortest path, restoring a clean, semantically coherent representation. We conducted extensive evaluations on text classification (TC) across three datasets and multiple adversarial attacks. The results demonstrate that our method, MC2F, not only establishes a new state-of-the-art in adversarial robustness but also fully preserves performance on clean data, even yielding modest gains in accuracy.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.