Papers
Topics
Authors
Recent
2000 character limit reached

CAPO: Confidence Aware Preference Optimization Learning for Multilingual Preferences (2511.07691v1)

Published 10 Nov 2025 in cs.CL and cs.AI

Abstract: Preference optimization is a critical post-training technique used to align LLMs with human preferences, typically by fine-tuning on ranked response pairs. While methods like Direct Preference Optimization (DPO) have proven effective in English, they often fail to generalize robustly to multilingual settings. We propose a simple yet effective alternative, Confidence-Aware Preference Optimization (CAPO), which replaces DPO's fixed treatment of preference pairs with a dynamic loss scaling mechanism based on a relative reward. By modulating the learning signal according to the confidence in each preference pair, CAPO enhances robustness to noisy or low-margin comparisons, typically encountered in multilingual text. Empirically, CAPO outperforms existing preference optimization baselines by at least 16% in reward accuracy, and improves alignment by widening the gap between preferred and dispreferred responses across languages.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.