Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Quantum Approximate Walk Algorithm (2511.07676v1)

Published 10 Nov 2025 in quant-ph

Abstract: The encoding of classical to quantum data mapping through trigonometric functions within arithmetic-based quantum computation algorithms leads to the exploitation of multivariate distributions. The studied variational quantum gate learning mechanism, which relies on agnostic gradient optimization, does not offer algorithmic guarantees for the correlation of results beyond the measured bitstring outputs. Consequently, existing methodologies are inapplicable to this problem. In this study, we present a classical data-traceable quantum oracle characterized by a circuit depth that increases linearly with the number of qubits. This configuration facilitates the learning of approximate result patterns through a shallow quantum circuit (SQC) layout. Moreover, our approach demonstrates that the classical preprocessing of mid-quantum measurement data enhances the interpretability of quantum approximate optimization algorithm (QAOA) outputs without requiring full quantum state tomography. By establishing an inferable mapping between the classical input and quantum circuit outcomes, we obtained experimental results on the state-of-the-art IBM Pittsburgh hardware, which yielded polynomial-time verification of the solution quality. This hybrid framework bridges the gap between near-term quantum capabilities and practical optimization requirements, offering a pathway toward reliable quantum-classical algorithms for industrial applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 8 likes.

Upgrade to Pro to view all of the tweets about this paper: