Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Confidence Intervals for Linear Models with Arbitrary Noise Contamination (2511.07605v1)

Published 10 Nov 2025 in math.ST and stat.ME

Abstract: We study confidence interval construction for linear regression under Huber's contamination model, where an unknown fraction of noise variables is arbitrarily corrupted. While robust point estimation in this setting is well understood, statistical inference remains challenging, especially because the contamination proportion is not identifiable from the data. We develop a new algorithm that constructs confidence intervals for individual regression coefficients without any prior knowledge of the contamination level. Our method is based on a Z-estimation framework using a smooth estimating function. The method directly quantifies the uncertainty of the estimating equation after a preprocessing step that decorrelates covariates associated with the nuisance parameters. We show that the resulting confidence interval has valid coverage uniformly over all contamination distributions and attains an optimal length of order $O(1/\sqrt{n(1-ε)2})$, matching the rate achievable when the contamination proportion $ε$ is known. This result stands in sharp contrast to the adaptation cost of robust interval estimation observed in the simpler Gaussian location model.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: