Papers
Topics
Authors
Recent
2000 character limit reached

Weighted Asymptotically Optimal Sequential Testing (2511.07588v1)

Published 10 Nov 2025 in stat.ME

Abstract: This paper develops a framework for incorporating prior information into sequential multiple testing procedures while maintaining asymptotic optimality. We define a weighted log-likelihood ratio (WLLR) as an additive modification of the standard LLR and use it to construct two new sequential tests: the Weighted Gap and Weighted Gap-Intersection procedures. We prove that both procedures provide strong control of the family-wise error rate. Our main theoretical contribution is to show that these weighted procedures are asymptotically optimal; their expected stopping times achieve the theoretical lower bound as the error probabilities vanish. This first-order optimality is shown to be robust, holding in high-dimensional regimes where the number of null hypotheses grows and in settings with random weights, provided that mild, interpretable conditions on the weight distribution are met.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: