Papers
Topics
Authors
Recent
2000 character limit reached

SemanticForge: Repository-Level Code Generation through Semantic Knowledge Graphs and Constraint Satisfaction

Published 10 Nov 2025 in cs.SE, cs.AI, and cs.DC | (2511.07584v1)

Abstract: LLMs have transformed software development by enabling automated code generation, yet they frequently suffer from systematic errors that limit practical deployment. We identify two critical failure modes: \textit{logical hallucination} (incorrect control/data-flow reasoning) and \textit{schematic hallucination} (type mismatches, signature violations, and architectural inconsistencies). These errors stem from the absence of explicit, queryable representations of repository-wide semantics. This paper presents \textbf{SemanticForge}, which introduces four fundamental algorithmic advances for semantically-aware code generation: (1) a novel automatic reconciliation algorithm for dual static-dynamic knowledge graphs, unifying compile-time and runtime program semantics; (2) a neural approach that learns to generate structured graph queries from natural language, achieving 73\% precision versus 51\% for traditional retrieval; (3) a novel beam search algorithm with integrated SMT solving, enabling real-time constraint verification during generation rather than post-hoc validation; and (4) an incremental maintenance algorithm that updates knowledge graphs in $O(|ΔR| \cdot \log n)$ time while maintaining semantic equivalence.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.