Papers
Topics
Authors
Recent
2000 character limit reached

LLM Optimization Unlocks Real-Time Pairwise Reranking (2511.07555v1)

Published 10 Nov 2025 in cs.CL

Abstract: Efficiently reranking documents retrieved from information retrieval (IR) pipelines to enhance overall quality of Retrieval-Augmented Generation (RAG) system remains an important yet challenging problem. Recent studies have highlighted the importance of LLMs in reranking tasks. In particular, Pairwise Reranking Prompting (PRP) has emerged as a promising plug-and-play approach due to its usability and effectiveness. However, the inherent complexity of the algorithm, coupled with the high computational demands and latency incurred due to LLMs, raises concerns about its feasibility in real-time applications. To address these challenges, this paper presents a focused study on pairwise reranking, demonstrating that carefully applied optimization methods can significantly mitigate these issues. By implementing these methods, we achieve a remarkable latency reduction of up to 166 times, from 61.36 seconds to 0.37 seconds per query, with an insignificant drop in performance measured by Recall@k. Our study highlights the importance of design choices that were previously overlooked, such as using smaller models, limiting the reranked set, using lower precision, reducing positional bias with one-directional order inference, and restricting output tokens. These optimizations make LLM-based reranking substantially more efficient and feasible for latency-sensitive, real-world deployments.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 11 likes about this paper.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube