Papers
Topics
Authors
Recent
2000 character limit reached

Provably Efficient Sample Complexity for Robust CMDP (2511.07486v1)

Published 10 Nov 2025 in cs.LG, eess.SY, and stat.ML

Abstract: We study the problem of learning policies that maximize cumulative reward while satisfying safety constraints, even when the real environment differs from a simulator or nominal model. We focus on robust constrained Markov decision processes (RCMDPs), where the agent must maximize reward while ensuring cumulative utility exceeds a threshold under the worst-case dynamics within an uncertainty set. While recent works have established finite-time iteration complexity guarantees for RCMDPs using policy optimization, their sample complexity guarantees remain largely unexplored. In this paper, we first show that Markovian policies may fail to be optimal even under rectangular uncertainty sets unlike the {\em unconstrained} robust MDP. To address this, we introduce an augmented state space that incorporates the remaining utility budget into the state representation. Building on this formulation, we propose a novel Robust constrained Value iteration (RCVI) algorithm with a sample complexity of $\mathcal{\tilde{O}}(|S||A|H5/ε2)$ achieving at most $ε$ violation using a generative model where $|S|$ and $|A|$ denote the sizes of the state and action spaces, respectively, and $H$ is the episode length. To the best of our knowledge, this is the {\em first sample complexity guarantee} for RCMDP. Empirical results further validate the effectiveness of our approach.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: