Papers
Topics
Authors
Recent
2000 character limit reached

Counterfactual Forecasting of Human Behavior using Generative AI and Causal Graphs (2511.07484v1)

Published 9 Nov 2025 in cs.LG, cs.CE, and stat.ME

Abstract: This study presents a novel framework for counterfactual user behavior forecasting that combines structural causal models with transformer-based generative artificial intelligence. To model fictitious situations, the method creates causal graphs that map the connections between user interactions, adoption metrics, and product features. The framework generates realistic behavioral trajectories under counterfactual conditions by using generative models that are conditioned on causal variables. Tested on datasets from web interactions, mobile applications, and e-commerce, the methodology outperforms conventional forecasting and uplift modeling techniques. Product teams can effectively simulate and assess possible interventions prior to deployment thanks to the framework improved interpretability through causal path visualization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.