Papers
Topics
Authors
Recent
2000 character limit reached

Alignment-Constrained Dynamic Pruning for LLMs: Identifying and Preserving Alignment-Critical Circuits (2511.07482v1)

Published 9 Nov 2025 in cs.LG, cs.AI, and cs.CL

Abstract: LLMs require substantial computational resources for inference, posing deployment challenges. While dynamic pruning offers superior efficiency over static methods through adaptive circuit selection, it exacerbates alignment degradation by retaining only input-dependent safety-critical circuit preservation across diverse inputs. As a result, addressing these heightened alignment vulnerabilities remains critical. We introduce Alignment-Aware Probe Pruning (AAPP), a dynamic structured pruning method that adaptively preserves alignment-relevant circuits during inference, building upon Probe Pruning. Experiments on LLaMA 2-7B, Qwen2.5-14B-Instruct, and Gemma-3-12B-IT show AAPP improves refusal rates by 50\% at matched compute, enabling efficient yet safety-preserving LLM deployment.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.