Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

ProcGen3D: Learning Neural Procedural Graph Representations for Image-to-3D Reconstruction (2511.07142v1)

Published 10 Nov 2025 in cs.CV

Abstract: We introduce ProcGen3D, a new approach for 3D content creation by generating procedural graph abstractions of 3D objects, which can then be decoded into rich, complex 3D assets. Inspired by the prevalent use of procedural generators in production 3D applications, we propose a sequentialized, graph-based procedural graph representation for 3D assets. We use this to learn to approximate the landscape of a procedural generator for image-based 3D reconstruction. We employ edge-based tokenization to encode the procedural graphs, and train a transformer prior to predict the next token conditioned on an input RGB image. Crucially, to enable better alignment of our generated outputs to an input image, we incorporate Monte Carlo Tree Search (MCTS) guided sampling into our generation process, steering output procedural graphs towards more image-faithful reconstructions. Our approach is applicable across a variety of objects that can be synthesized with procedural generators. Extensive experiments on cacti, trees, and bridges show that our neural procedural graph generation outperforms both state-of-the-art generative 3D methods and domain-specific modeling techniques. Furthermore, this enables improved generalization on real-world input images, despite training only on synthetic data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: