Papers
Topics
Authors
Recent
2000 character limit reached

Increasing AI Explainability by LLM Driven Standard Processes (2511.07083v1)

Published 10 Nov 2025 in cs.AI

Abstract: This paper introduces an approach to increasing the explainability of AI systems by embedding LLMs within standardized analytical processes. While traditional explainable AI (XAI) methods focus on feature attribution or post-hoc interpretation, the proposed framework integrates LLMs into defined decision models such as Question-Option-Criteria (QOC), Sensitivity Analysis, Game Theory, and Risk Management. By situating LLM reasoning within these formal structures, the approach transforms opaque inference into transparent and auditable decision traces. A layered architecture is presented that separates the reasoning space of the LLM from the explainable process space above it. Empirical evaluations show that the system can reproduce human-level decision logic in decentralized governance, systems analysis, and strategic reasoning contexts. The results suggest that LLM-driven standard processes provide a foundation for reliable, interpretable, and verifiable AI-supported decision making.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.