Papers
Topics
Authors
Recent
2000 character limit reached

Integrating Reweighted Least Squares with Plug-and-Play Diffusion Priors for Noisy Image Restoration (2511.06823v1)

Published 10 Nov 2025 in cs.CV

Abstract: Existing plug-and-play image restoration methods typically employ off-the-shelf Gaussian denoisers as proximal operators within classical optimization frameworks based on variable splitting. Recently, denoisers induced by generative priors have been successfully integrated into regularized optimization methods for image restoration under Gaussian noise. However, their application to non-Gaussian noise--such as impulse noise--remains largely unexplored. In this paper, we propose a plug-and-play image restoration framework based on generative diffusion priors for robust removal of general noise types, including impulse noise. Within the maximum a posteriori (MAP) estimation framework, the data fidelity term is adapted to the specific noise model. Departing from the conventional least-squares loss used for Gaussian noise, we introduce a generalized Gaussian scale mixture-based loss, which approximates a wide range of noise distributions and leads to an $\ell_q$-norm ($0<q\leq2$) fidelity term. This optimization problem is addressed using an iteratively reweighted least squares (IRLS) approach, wherein the proximal step involving the generative prior is efficiently performed via a diffusion-based denoiser. Experimental results on benchmark datasets demonstrate that the proposed method effectively removes non-Gaussian impulse noise and achieves superior restoration performance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: