Papers
Topics
Authors
Recent
2000 character limit reached

Learning to Focus: Focal Attention for Selective and Scalable Transformers (2511.06818v1)

Published 10 Nov 2025 in cs.CL and cs.LG

Abstract: Attention is a core component of transformer architecture, whether encoder-only, decoder-only, or encoder-decoder model. However, the standard softmax attention often produces noisy probability distribution, which can impair effective feature selection at every layer of these models, particularly for long contexts. We propose Focal Attention, a simple yet effective modification that sharpens the attention distribution by controlling the softmax temperature, either as a fixed hyperparameter or as a learnable parameter during training. This sharpening enables the model to concentrate on the most relevant tokens while suppressing irrelevant ones. Empirically, Focal Attention scales more favorably than standard transformer with respect to model size, training data, and context length. Across diverse benchmarks, it achieves the same accuracy with up to 42% fewer parameters or 33% less training data. On long-context tasks, it delivers substantial relative improvements ranging from 17% to 82%, demonstrating its effectiveness in real world applications.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.