Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 133 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 164 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Dual Mamba for Node-Specific Representation Learning: Tackling Over-Smoothing with Selective State Space Modeling (2511.06756v1)

Published 10 Nov 2025 in cs.LG

Abstract: Over-smoothing remains a fundamental challenge in deep Graph Neural Networks (GNNs), where repeated message passing causes node representations to become indistinguishable. While existing solutions, such as residual connections and skip layers, alleviate this issue to some extent, they fail to explicitly model how node representations evolve in a node-specific and progressive manner across layers. Moreover, these methods do not take global information into account, which is also crucial for mitigating the over-smoothing problem. To address the aforementioned issues, in this work, we propose a Dual Mamba-enhanced Graph Convolutional Network (DMbaGCN), which is a novel framework that integrates Mamba into GNNs to address over-smoothing from both local and global perspectives. DMbaGCN consists of two modules: the Local State-Evolution Mamba (LSEMba) for local neighborhood aggregation and utilizing Mamba's selective state space modeling to capture node-specific representation dynamics across layers, and the Global Context-Aware Mamba (GCAMba) that leverages Mamba's global attention capabilities to incorporate global context for each node. By combining these components, DMbaGCN enhances node discriminability in deep GNNs, thereby mitigating over-smoothing. Extensive experiments on multiple benchmarks demonstrate the effectiveness and efficiency of our method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.