Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

S-DAG: A Subject-Based Directed Acyclic Graph for Multi-Agent Heterogeneous Reasoning (2511.06727v1)

Published 10 Nov 2025 in cs.MA and cs.AI

Abstract: LLMs have achieved impressive performance in complex reasoning problems. Their effectiveness highly depends on the specific nature of the task, especially the required domain knowledge. Existing approaches, such as mixture-of-experts, typically operate at the task level; they are too coarse to effectively solve the heterogeneous problems involving multiple subjects. This work proposes a novel framework that performs fine-grained analysis at subject level equipped with a designated multi-agent collaboration strategy for addressing heterogeneous problem reasoning. Specifically, given an input query, we first employ a Graph Neural Network to identify the relevant subjects and infer their interdependencies to generate an \textit{Subject-based Directed Acyclic Graph} (S-DAG), where nodes represent subjects and edges encode information flow. Then we profile the LLM models by assigning each model a subject-specific expertise score, and select the top-performing one for matching corresponding subject of the S-DAG. Such subject-model matching enables graph-structured multi-agent collaboration where information flows from the starting model to the ending model over S-DAG. We curate and release multi-subject subsets of standard benchmarks (MMLU-Pro, GPQA, MedMCQA) to better reflect complex, real-world reasoning tasks. Extensive experiments show that our approach significantly outperforms existing task-level model selection and multi-agent collaboration baselines in accuracy and efficiency. These results highlight the effectiveness of subject-aware reasoning and structured collaboration in addressing complex and multi-subject problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: