Multi-Modal Continual Learning via Cross-Modality Adapters and Representation Alignment with Knowledge Preservation (2511.06723v1)
Abstract: Continual learning is essential for adapting models to new tasks while retaining previously acquired knowledge. While existing approaches predominantly focus on uni-modal data, multi-modal learning offers substantial benefits by utilizing diverse sensory inputs, akin to human perception. However, multi-modal continual learning presents additional challenges, as the model must effectively integrate new information from various modalities while preventing catastrophic forgetting. In this work, we propose a pre-trained model-based framework for multi-modal continual learning. Our framework includes a novel cross-modality adapter with a mixture-of-experts structure to facilitate effective integration of multi-modal information across tasks. We also introduce a representation alignment loss that fosters learning of robust multi-modal representations, and regularize relationships between learned representations to preserve knowledge from previous tasks. Experiments on several multi-modal datasets demonstrate that our approach consistently outperforms baselines in both class-incremental and domain-incremental learning, achieving higher accuracy and reduced forgetting.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.