Papers
Topics
Authors
Recent
2000 character limit reached

Structural Enforcement of Statistical Rigor in AI-Driven Discovery: A Functional Architecture (2511.06701v1)

Published 10 Nov 2025 in cs.SE and cs.AI

Abstract: Sequential statistical protocols require meticulous state management and robust error handling -- challenges naturally suited to functional programming. We present a functional architecture for structural enforcement of statistical rigor in automated research systems (AI-Scientists). These LLM-driven systems risk generating spurious discoveries through dynamic hypothesis testing. We introduce the Research monad, a Haskell eDSL that enforces sequential statistical protocols (e.g., Online FDR (false discovery rate) control) using a monad transformer stack. To address risks in hybrid architectures where LLMs generate imperative code, we employ Declarative Scaffolding -- generating rigid harnesses that structurally constrain execution and prevent methodological errors like data leakage. We validate this approach through large-scale simulation (N=2000 hypotheses) and an end-to-end case study, demonstrating essential defense-in-depth for automated science integrity.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.