Papers
Topics
Authors
Recent
2000 character limit reached

Sim4Seg: Boosting Multimodal Multi-disease Medical Diagnosis Segmentation with Region-Aware Vision-Language Similarity Masks (2511.06665v1)

Published 10 Nov 2025 in cs.CV and cs.AI

Abstract: Despite significant progress in pixel-level medical image analysis, existing medical image segmentation models rarely explore medical segmentation and diagnosis tasks jointly. However, it is crucial for patients that models can provide explainable diagnoses along with medical segmentation results. In this paper, we introduce a medical vision-language task named Medical Diagnosis Segmentation (MDS), which aims to understand clinical queries for medical images and generate the corresponding segmentation masks as well as diagnostic results. To facilitate this task, we first present the Multimodal Multi-disease Medical Diagnosis Segmentation (M3DS) dataset, containing diverse multimodal multi-disease medical images paired with their corresponding segmentation masks and diagnosis chain-of-thought, created via an automated diagnosis chain-of-thought generation pipeline. Moreover, we propose Sim4Seg, a novel framework that improves the performance of diagnosis segmentation by taking advantage of the Region-Aware Vision-Language Similarity to Mask (RVLS2M) module. To improve overall performance, we investigate a test-time scaling strategy for MDS tasks. Experimental results demonstrate that our method outperforms the baselines in both segmentation and diagnosis.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.