Papers
Topics
Authors
Recent
2000 character limit reached

An ordering for the strength of functional dependence (2511.06498v1)

Published 9 Nov 2025 in math.ST and stat.TH

Abstract: We introduce a new dependence order that satisfies eight natural axioms that we propose for a global dependence order. Its minimal and maximal elements characterize independence and perfect dependence. Moreover, it characterizes conditional independence, satisfies information monotonicity, and exhibits several invariance properties. Consequently,it is an ordering for the strength of functional dependence of a random variable Y on a random vector X. As we show, various dependence measures, such as Chatterjee's rank correlation, are increasing in this order. We characterize our ordering by the Schur order and by the concordance order, and we verify it in models such as the additive error model, the multivariate normal distribution, and various copula-based models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: