Zooming into Comics: Region-Aware RL Improves Fine-Grained Comic Understanding in Vision-Language Models (2511.06490v1)
Abstract: Complex visual narratives, such as comics, present a significant challenge to Vision-LLMs (VLMs). Despite excelling on natural images, VLMs often struggle with stylized line art, onomatopoeia, and densely packed multi-panel layouts. To address this gap, we introduce AI4VA-FG, the first fine-grained and comprehensive benchmark for VLM-based comic understanding. It spans tasks from foundational recognition and detection to high-level character reasoning and narrative construction, supported by dense annotations for characters, poses, and depth. Beyond that, we evaluate state-of-the-art proprietary models, including GPT-4o and Gemini-2.5, and open-source models such as Qwen2.5-VL, revealing substantial performance deficits across core tasks of our benchmarks and underscoring that comic understanding remains an unsolved challenge. To enhance VLMs' capabilities in this domain, we systematically investigate post-training strategies, including supervised fine-tuning on solutions (SFT-S), supervised fine-tuning on reasoning trajectories (SFT-R), and reinforcement learning (RL). Beyond that, inspired by the emerging "Thinking with Images" paradigm, we propose Region-Aware Reinforcement Learning (RARL) for VLMs, which trains models to dynamically attend to relevant regions through zoom-in operations. We observe that when applied to the Qwen2.5-VL model, RL and RARL yield significant gains in low-level entity recognition and high-level storyline ordering, paving the way for more accurate and efficient VLM applications in the comics domain.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.