SAR-LM: Symbolic Audio Reasoning with Large Language Models (2511.06483v1)
Abstract: LLMs have advanced in text and vision, but their reasoning on audio remains limited. Most existing methods rely on dense audio embeddings, which are difficult to interpret and often fail on structured reasoning tasks. Caption-based approaches, introduced in recent benchmarks such as MMAU, improve performance by translating audio into text, yet still depend on dense embeddings as input, offering little insight when models fail. We present SAR-LM, a symbolic audio reasoning pipeline that builds on this caption-based paradigm by converting audio into structured, human-readable features across speech, sound events, and music. These symbolic inputs support both reasoning and transparent error analysis, enabling us to trace failures to specific features. Across three benchmarks, MMAU, MMAR, and OmniBench, SAR-LM achieves competitive results, while prioritizing interpretability as its primary contribution.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.