DyKAF: Dynamical Kronecker Approximation of the Fisher Information Matrix for Gradient Preconditioning (2511.06477v1)
Abstract: Recently, optimizers that explicitly treat weights as matrices, rather than flattened vectors, have demonstrated their effectiveness. This perspective naturally leads to structured approximations of the Fisher matrix as preconditioners, where the matrix view induces a Kronecker-factorized form that enables memory-efficient representation. However, constructing such approximations both efficiently and accurately remains an open challenge, since obtaining the optimal factorization is resource-intensive and practical methods therefore rely on heuristic design choices. In this work, we introduce a novel approach that leverages projector-splitting integrators to construct effective preconditioners. Our optimizer, DyKAF (Dynamical Kronecker Approximation of the Fisher Matrix), consistently improves the Fisher matrix approximation quality. Experiments on LLM pre-training and fine-tuning demonstrate that DyKAF outperforms existing optimizers across a range of evaluation metrics.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.