Papers
Topics
Authors
Recent
2000 character limit reached

Error Estimate and Convergence Analysis for Data Valuation (2511.06463v1)

Published 9 Nov 2025 in cs.LG

Abstract: Data valuation quantifies data importance, but existing methods cannot ensure validity in a single training process. The neural dynamic data valuation (NDDV) method [3] addresses this limitation. Based on NDDV, we are the first to explore error estimation and convergence analysis in data valuation. Under Lipschitz and smoothness assumptions, we derive quadratic error bounds for loss differences that scale inversely with time steps and quadratically with control variations, ensuring stability. We also prove that the expected squared gradient norm for the training loss vanishes asymptotically, and that the meta loss converges sublinearly over iterations. In particular, NDDV achieves sublinear convergence.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.