Papers
Topics
Authors
Recent
2000 character limit reached

Vocabulary In-Context Learning in Transformers: Benefits of Positional Encoding (2511.06376v1)

Published 9 Nov 2025 in cs.LG

Abstract: Numerous studies have demonstrated that the Transformer architecture possesses the capability for in-context learning (ICL). In scenarios involving function approximation, context can serve as a control parameter for the model, endowing it with the universal approximation property (UAP). In practice, context is represented by tokens from a finite set, referred to as a vocabulary, which is the case considered in this paper, \emph{i.e.}, vocabulary in-context learning (VICL). We demonstrate that VICL in single-layer Transformers, without positional encoding, does not possess the UAP; however, it is possible to achieve the UAP when positional encoding is included. Several sufficient conditions for the positional encoding are provided. Our findings reveal the benefits of positional encoding from an approximation theory perspective in the context of ICL.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.