Papers
Topics
Authors
Recent
2000 character limit reached

CINEMAE: Leveraging Frozen Masked Autoencoders for Cross-Generator AI Image Detection (2511.06325v1)

Published 9 Nov 2025 in cs.CV, cs.AI, and cs.CY

Abstract: While context-based detectors have achieved strong generalization for AI-generated text by measuring distributional inconsistencies, image-based detectors still struggle with overfitting to generator-specific artifacts. We introduce CINEMAE, a novel paradigm for AIGC image detection that adapts the core principles of text detection methods to the visual domain. Our key insight is that Masked AutoEncoder (MAE), trained to reconstruct masked patches conditioned on visible context, naturally encodes semantic consistency expectations. We formalize this reconstruction process probabilistically, computing conditional Negative Log-Likelihood (NLL, p(masked | visible)) to quantify local semantic anomalies. By aggregating these patch-level statistics with global MAE features through learned fusion, CINEMAE achieves strong cross-generator generalization. Trained exclusively on Stable Diffusion v1.4, our method achieves over 95% accuracy on all eight unseen generators in the GenImage benchmark, substantially outperforming state-of-the-art detectors. This demonstrates that context-conditional reconstruction uncertainty provides a robust, transferable signal for AIGC detection.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.