Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 55 tok/s
Gemini 2.5 Flash 173 tok/s Pro
Kimi K2 194 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

MoRA: Missing Modality Low-Rank Adaptation for Visual Recognition (2511.06225v1)

Published 9 Nov 2025 in cs.CV

Abstract: Pre-trained vision LLMs have shown remarkable performance on visual recognition tasks, but they typically assume the availability of complete multimodal inputs during both training and inference. In real-world scenarios, however, modalities may be missing due to privacy constraints, collection difficulties, or resource limitations. While previous approaches have addressed this challenge using prompt learning techniques, they fail to capture the cross-modal relationships necessary for effective multimodal visual recognition and suffer from inevitable computational overhead. In this paper, we introduce MoRA, a parameter-efficient fine-tuning method that explicitly models cross-modal interactions while maintaining modality-specific adaptations. MoRA introduces modality-common parameters between text and vision encoders, enabling bidirectional knowledge transfer. Additionally, combined with the modality-specific parameters, MoRA allows the backbone model to maintain inter-modality interaction and enable intra-modality flexibility. Extensive experiments on standard benchmarks demonstrate that MoRA achieves an average performance improvement in missing-modality scenarios by 5.24% and uses only 25.90% of the inference time compared to the SOTA method while requiring only 0.11% of trainable parameters compared to full fine-tuning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.