Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 54 tok/s
Gemini 2.5 Flash 165 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Simulating Students with Large Language Models: A Review of Architecture, Mechanisms, and Role Modelling in Education with Generative AI (2511.06078v1)

Published 8 Nov 2025 in cs.CY, cs.AI, and cs.CL

Abstract: Simulated Students offer a valuable methodological framework for evaluating pedagogical approaches and modelling diverse learner profiles, tasks which are otherwise challenging to undertake systematically in real-world settings. Recent research has increasingly focused on developing such simulated agents to capture a range of learning styles, cognitive development pathways, and social behaviours. Among contemporary simulation techniques, the integration of LLMs into educational research has emerged as a particularly versatile and scalable paradigm. LLMs afford a high degree of linguistic realism and behavioural adaptability, enabling agents to approximate cognitive processes and engage in contextually appropriate pedagogical dialogues. This paper presents a thematic review of empirical and methodological studies utilising LLMs to simulate student behaviour across educational environments. We synthesise current evidence on the capacity of LLM-based agents to emulate learner archetypes, respond to instructional inputs, and interact within multi-agent classroom scenarios. Furthermore, we examine the implications of such systems for curriculum development, instructional evaluation, and teacher training. While LLMs surpass rule-based systems in natural language generation and situational flexibility, ongoing concerns persist regarding algorithmic bias, evaluation reliability, and alignment with educational objectives. The review identifies existing technological and methodological gaps and proposes future research directions for integrating generative AI into adaptive learning systems and instructional design.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.