Papers
Topics
Authors
Recent
2000 character limit reached

Ontology Learning and Knowledge Graph Construction: A Comparison of Approaches and Their Impact on RAG Performance (2511.05991v1)

Published 8 Nov 2025 in cs.IR and cs.AI

Abstract: Retrieval-Augmented Generation (RAG) systems combine LLMs with external knowledge, and their performance depends heavily on how that knowledge is represented. This study investigates how different Knowledge Graph (KG) construction strategies influence RAG performance. We compare a variety of approaches: standard vector-based RAG, GraphRAG, and retrieval over KGs built from ontologies derived either from relational databases or textual corpora. Results show that ontology-guided KGs incorporating chunk information achieve competitive performance with state-of-the-art frameworks, substantially outperforming vector retrieval baselines. Moreover, the findings reveal that ontology-guided KGs built from relational databases perform competitively to ones built with ontologies extracted from text, with the benefit of offering a dual advantage: they require a one-time-only ontology learning process, substantially reducing LLM usage costs; and avoid the complexity of ontology merging inherent to text-based approaches.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.