Papers
Topics
Authors
Recent
2000 character limit reached

Bespoke Co-processor for Energy-Efficient Health Monitoring on RISC-V-based Flexible Wearables (2511.05985v1)

Published 8 Nov 2025 in cs.LG and cs.AR

Abstract: Flexible electronics offer unique advantages for conformable, lightweight, and disposable healthcare wearables. However, their limited gate count, large feature sizes, and high static power consumption make on-body machine learning classification highly challenging. While existing bendable RISC-V systems provide compact solutions, they lack the energy efficiency required. We present a mechanically flexible RISC-V that integrates a bespoke multiply-accumulate co-processor with fixed coefficients to maximize energy efficiency and minimize latency. Our approach formulates a constrained programming problem to jointly determine co-processor constants and optimally map Multi-Layer Perceptron (MLP) inference operations, enabling compact, model-specific hardware by leveraging the low fabrication and non-recurring engineering costs of flexible technologies. Post-layout results demonstrate near-real-time performance across several healthcare datasets, with our circuits operating within the power budget of existing flexible batteries and occupying only 2.42 mm2, offering a promising path toward accessible, sustainable, and conformable healthcare wearables. Our microprocessors achieve an average 2.35x speedup and 2.15x lower energy consumption compared to the state of the art.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.