Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

DiA-gnostic VLVAE: Disentangled Alignment-Constrained Vision Language Variational AutoEncoder for Robust Radiology Reporting with Missing Modalities (2511.05968v1)

Published 8 Nov 2025 in cs.CV, cs.AI, and cs.LG

Abstract: The integration of medical images with clinical context is essential for generating accurate and clinically interpretable radiology reports. However, current automated methods often rely on resource-heavy LLMs or static knowledge graphs and struggle with two fundamental challenges in real-world clinical data: (1) missing modalities, such as incomplete clinical context , and (2) feature entanglement, where mixed modality-specific and shared information leads to suboptimal fusion and clinically unfaithful hallucinated findings. To address these challenges, we propose the DiA-gnostic VLVAE, which achieves robust radiology reporting through Disentangled Alignment. Our framework is designed to be resilient to missing modalities by disentangling shared and modality-specific features using a Mixture-of-Experts (MoE) based Vision-Language Variational Autoencoder (VLVAE). A constrained optimization objective enforces orthogonality and alignment between these latent representations to prevent suboptimal fusion. A compact LLaMA-X decoder then uses these disentangled representations to generate reports efficiently. On the IU X-Ray and MIMIC-CXR datasets, DiA has achieved competetive BLEU@4 scores of 0.266 and 0.134, respectively. Experimental results show that the proposed method significantly outperforms state-of-the-art models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.