Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

EGG-SR: Embedding Symbolic Equivalence into Symbolic Regression via Equality Graph (2511.05849v1)

Published 8 Nov 2025 in cs.SC, cs.AI, and cs.LG

Abstract: Symbolic regression seeks to uncover physical laws from experimental data by searching for closed-form expressions, which is an important task in AI-driven scientific discovery. Yet the exponential growth of the search space of expression renders the task computationally challenging. A promising yet underexplored direction for reducing the effective search space and accelerating training lies in symbolic equivalence: many expressions, although syntactically different, define the same function -- for example, $\log(x_12x_23)$, $\log(x_12)+\log(x_23)$, and $2\log(x_1)+3\log(x_2)$. Existing algorithms treat such variants as distinct outputs, leading to redundant exploration and slow learning. We introduce EGG-SR, a unified framework that integrates equality graphs (e-graphs) into diverse symbolic regression algorithms, including Monte Carlo Tree Search (MCTS), deep reinforcement learning (DRL), and LLMs. EGG-SR compactly represents equivalent expressions through the proposed EGG module, enabling more efficient learning by: (1) pruning redundant subtree exploration in EGG-MCTS, (2) aggregating rewards across equivalence classes in EGG-DRL, and (3) enriching feedback prompts in EGG-LLM. Under mild assumptions, we show that embedding e-graphs tightens the regret bound of MCTS and reduces the variance of the DRL gradient estimator. Empirically, EGG-SR consistently enhances multiple baselines across challenging benchmarks, discovering equations with lower normalized mean squared error than state-of-the-art methods. Code implementation is available at: https://www.github.com/jiangnanhugo/egg-sr.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: