Papers
Topics
Authors
Recent
2000 character limit reached

Physics-Guided Machine Learning for Uncertainty Quantification in Turbulence Models

Published 7 Nov 2025 in cs.LG and physics.flu-dyn | (2511.05633v1)

Abstract: Predicting the evolution of turbulent flows is central across science and engineering. Most studies rely on simulations with turbulence models, whose empirical simplifications introduce epistemic uncertainty. The Eigenspace Perturbation Method (EPM) is a widely used physics-based approach to quantify model-form uncertainty, but being purely physics-based it can overpredict uncertainty bounds. We propose a convolutional neural network (CNN)-based modulation of EPM perturbation magnitudes to improve calibration while preserving physical consistency. Across canonical cases, the hybrid ML-EPM framework yields substantially tighter, better-calibrated uncertainty estimates than baseline EPM alone.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.