Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

LLMs as Packagers of HPC Software (2511.05626v1)

Published 7 Nov 2025 in cs.SE, cs.AI, and cs.DC

Abstract: High performance computing (HPC) software ecosystems are inherently heterogeneous, comprising scientific applications that depend on hundreds of external packages, each with distinct build systems, options, and dependency constraints. Tools such as Spack automate dependency resolution and environment management, but their effectiveness relies on manually written build recipes. As these ecosystems grow, maintaining existing specifications and creating new ones becomes increasingly labor-intensive. While LLMs have shown promise in code generation, automatically producing correct and maintainable Spack recipes remains a significant challenge. We present a systematic analysis of how LLMs and context-augmentation methods can assist in the generation of Spack recipes. To this end, we introduce SpackIt, an end-to-end framework that combines repository analysis, retrieval of relevant examples, and iterative refinement through diagnostic feedback. We apply SpackIt to a representative subset of 308 open-source HPC packages to assess its effectiveness and limitations. Our results show that SpackIt increases installation success from 20% in a zero-shot setting to over 80% in its best configuration, demonstrating the value of retrieval and structured feedback for reliable package synthesis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: