Beyond Softmax: Dual-Branch Sigmoid Architecture for Accurate Class Activation Maps (2511.05590v1)
Abstract: Class Activation Mapping (CAM) and its extensions have become indispensable tools for visualizing the evidence behind deep network predictions. However, by relying on a final softmax classifier, these methods suffer from two fundamental distortions: additive logit shifts that arbitrarily bias importance scores, and sign collapse that conflates excitatory and inhibitory features. We propose a simple, architecture-agnostic dual-branch sigmoid head that decouples localization from classification. Given any pretrained model, we clone its classification head into a parallel branch ending in per-class sigmoid outputs, freeze the original softmax head, and fine-tune only the sigmoid branch with class-balanced binary supervision. At inference, softmax retains recognition accuracy, while class evidence maps are generated from the sigmoid branch -- preserving both magnitude and sign of feature contributions. Our method integrates seamlessly with most CAM variants and incurs negligible overhead. Extensive evaluations on fine-grained tasks (CUB-200-2011, Stanford Cars) and WSOL benchmarks (ImageNet-1K, OpenImages30K) show improved explanation fidelity and consistent Top-1 Localization gains -- without any drop in classification accuracy. Code is available at https://github.com/finallyupper/beyond-softmax.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.