Papers
Topics
Authors
Recent
2000 character limit reached

Token Is All You Need: Cognitive Planning through Belief-Intent Co-Evolution (2511.05540v2)

Published 30 Oct 2025 in cs.CV, cs.AI, cs.LG, cs.NE, and cs.RO

Abstract: We challenge the long-standing assumption that exhaustive scene modeling is required for high-performance end-to-end autonomous driving (E2EAD). Inspired by cognitive science, we propose that effective planning arises not from reconstructing the world, but from the co-evolution of belief and intent within a minimal set of semantically rich tokens. Experiments on the nuPlan benchmark (720 scenarios, 11k+ samples) reveal three principles: (1) sparse intent tokens alone achieve 0.487 m ADE, demonstrating strong performance without future prediction; (2) conditioning trajectory decoding on predicted future tokens reduces ADE to 0.382 m, a 21.6% improvement, showing that performance emerges from cognitive planning; and (3) explicit reconstruction loss degrades performance, confirming that task-driven belief-intent co-evolution suffices under reliable perception inputs. Crucially, we observe the emergence of cognitive consistency: through prolonged training, the model spontaneously develops stable token dynamics that balance current perception (belief) and future goals (intent). This process, accompanied by "temporal fuzziness," enables robustness under uncertainty and continuous self-optimization. Our work establishes a new paradigm: intelligence lies not in pixel fidelity, but in the tokenized duality of belief and intent. By reframing planning as understanding rather than reaction, TIWM bridges the gap between world models and VLA systems, paving the way for foresightful agents that plan through imagination. Note: Numerical comparisons with methods reporting results on nuScenes are indicative only, as nuPlan presents a more challenging planning-focused evaluation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.