Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Randomized-MLP Regularization Improves Domain Adaptation and Interpretability in DINOv2 (2511.05509v1)

Published 24 Oct 2025 in cs.CV and cs.AI

Abstract: Vision Transformers (ViTs), such as DINOv2, achieve strong performance across domains but often repurpose low-informative patch tokens in ways that reduce the interpretability of attention and feature maps. This challenge is especially evident in medical imaging, where domain shifts can degrade both performance and transparency. In this paper, we introduce Randomized-MLP (RMLP) regularization, a contrastive learning-based method that encourages more semantically aligned representations. We use RMLPs when fine-tuning DINOv2 to both medical and natural image modalities, showing that it improves or maintains downstream performance while producing more interpretable attention maps. We also provide a mathematical analysis of RMLPs, offering insights into its role in enhancing ViT-based models and advancing our understanding of contrastive learning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: