On linkage bias-correction for estimators using iterated bootstraps (2511.05004v1)
Abstract: By amalgamating data from disparate sources, the resulting integrated dataset becomes a valuable resource for statistical analysis. In probabilistic record linkage, the effectiveness of such integration relies on the availability of linkage variables free from errors. Where this is lacking, the linked data set would suffer from linkage errors and the resultant analyses, linkage bias. This paper proposes a methodology leveraging the bootstrap technique to devise linkage bias-corrected estimators. Additionally, it introduces a test to assess whether increasing the number of bootstrap iterations meaningfully reduces linkage bias or merely inflates variance without further improving accuracy. An application of these methodologies is demonstrated through the analysis of a simulated dataset featuring hormone information, along with a dataset obtained from linking two data sets from the Australian Bureau of Statistics' labour mobility surveys.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.